Multi-Timescale, Gradient Descent, Temporal Difference Learning with Linear Options
نویسندگان
چکیده
Deliberating on large or continuous state spaces have been long standing challenges in reinforcement learning. Temporal Abstraction have somewhat made this possible, but efficiently planing using temporal abstraction still remains an issue. Moreover using spatial abstractions to learn policies for various situations at once while using temporal abstraction models is an open problem. We propose here an efficient algorithm which is convergent under linear function approximation while planning using temporally abstract actions. We show how this algorithm can be used along with randomly generated option models over multiple time scales to plan agents which need to act real time. Using these randomly generated option models over multiple time scales are shown to reduce number of decision epochs required to solve the given task, hence effectively reducing the time needed for deliberation. ar X iv :1 70 3. 06 47 1v 1 [ cs .A I] 1 9 M ar 2 01 7
منابع مشابه
Natural actor-critic algorithms
We present four new reinforcement learning algorithms based on actor–critic, natural-gradient and function-approximation ideas, and we provide their convergence proofs. Actor–critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochasti...
متن کاملIncremental Natural Actor-Critic Algorithms
We present four new reinforcement learning algorithms based on actor-critic and natural-gradient ideas, and provide their convergence proofs. Actor-critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochastic gradient descent. Methods...
متن کاملFast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation
Sutton, Szepesvári and Maei (2009) recently introduced the first temporal-difference learning algorithm compatible with both linear function approximation and off-policy training, and whose complexity scales only linearly in the size of the function approximator. Although their “gradient temporal difference” (GTD) algorithm converges reliably, it can be very slow compared to conventional linear...
متن کاملConvergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation
We introduce the first temporal-difference learning algorithms that converge with smooth value function approximators, such as neural networks. Conventional temporal-difference (TD) methods, such as TD(λ), Q-learning and Sarsa have been used successfully with function approximation in many applications. However, it is well known that off-policy sampling, as well as nonlinear function approximat...
متن کاملNatural-Gradient Actor-Critic Algorithms
We prove the convergence of four new reinforcement learning algorithms based on the actorcritic architecture, on function approximation, and on natural gradients. Reinforcement learning is a class of methods for solving Markov decision processes from sample trajectories under lack of model information. Actor-critic reinforcement learning methods are online approximations to policy iteration in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.06471 شماره
صفحات -
تاریخ انتشار 2017